Technical Overview of RIA

Why is RIA Unique and New?

- 10-100x stronger uranium beams
 - Used with fast gas catcher to enable precision beams of reaccelerated rare isotopes without chemical dependence
 - World's highest intensity in-flight facility
- 8x stronger light ion beams
 - All species, e.g. 0.9-GeV protons, 2-GeV ³He
- Most efficient reacceleration

RIA comprises high intensity in-flight methods, high-intensity spallation-based ISOL, and the new fragmentation/gas catcher method

- Fast Extraction Times (~msec)
- Chemical independence
- Isobar separation

Important Technical Features of RIA

• High power CW SC Linac Driver (1.4 GV, 400 kW)

Advdanced ECR Ion Source

Accelerate 2 charge states of U from ECR

All beams: protons-uranium

Superconducting over extended velocity range: 0.2 – 900 MeV/u

Multiple-charge-state acceleration after strippers

Adapted design to use both SNS cryomodules

RF switching to multiple targets

• Large acceptance fragment separators

- 1) "Range Bunching" + Fast gas catcher for ISOL
- 2) High resolution and high purity for in-flight
- High power density ISOL and fragmentation targets

Liquid lithium as target for fragmentation and cooling for n-generator

- Efficient post-acceleration from 1+ ion sources
- Next-generation instrumentation for research with rare isotopes

Simplified Schematic Layout of the Rare Isotope Accelerator (RIA) Facility

Experimental Areas:

1: < 12 MeV/u 2: < 1.5 MeV/u 3: Nonaccelerated 4: In-flight fragments

Outline of Talk

- Production of Rare Isotopes: Reactions
- List of Important Technologies and R&D
- Components of Multi-Beam Driver
- Target Areas and Beam Sharing
- Heavy Ion Fragment Separators
 - In-flight beams
 - Reaccelerated beams
- Spallation Target Areas
- Isobar Separation
- Components of Post Accelerator
- Experimental Areas and Instrumentation
- Conclusions

RIA Yields of Fast Fragmentation Beams

RIA Yields of 1⁺ Ions for Reacceleration

To produce mass-separated 1+ ions at RIA several reaction mechanisms can be used. For some chemical elements the most intense beams come from the standard light-ion induced spallation or neutron-induced fission reactions. For reactive or refractory elements, or very short-lived isotopes, the heavyion fragmentation/gas catcher method wins. RIA is unique in its ability to utilize all of these techniques.

Schematic Layout of RIA on the ANL Site

Developments for RIA

- **♦ Post-Accelerator Based on ATLAS**
 - World's first superconducting ion accelerator
- **♦ Multi-Beam Driver**
 - 400 kW Superconducting Linac (protons to uranium)
 - Accelerates 5 charge states after stripping
 - Uses advanced ECR ion source technology
 - 9 classes of SC resonators, 2 in common with SNS
- **♦ Liquid Lithium Targets**
 - for 100-kW heavy-ion beams (from fusion R&D)
- **♦ Two-step Target Concept**
 - neutron-generator (d+W > n+U)
- **♦ Fast Gas Catcher**
 - short release times,
 - chemical independence,
 - no ion source
- **♦ CW 1+ RFQ**
 - high-quality, efficient post accelerator
- ♦ $1+ \rightarrow 2+$ stripping
 - efficient stripping at very low velocity in helium gas

Block diagram of Driver

Beam list for Driver

A	I source	Qinj	Qstrip	Qout	I out	Energy out	Beam Power
	рμА				рμА	MeV/u	kW
1	556	1	-	1	445	899	400
3	232	2	-	2	186	717	400
2	416	1	-	1	333	600	400
18	54	6	8	8	40.3	551	400
40	29	8	18	18	18.0	554	400
86	15	14	33-34	36	8.8	515	390
136	12	18	46-48	53-54	6.2	476	400
238	3	28-29	69-73	87-90	1.6	403	152

RF power limits beam to 400 kW; the heaviest beams are limited by ion source output at the required charge state

Longitudinal phase space plots of two-charge state uranium beam along the LEBT

Due to synchrotron oscillations the energy spread is much less than the charge difference.

Phase space plots of a five charge-state uranium beam at 85 MeV/u before passing through the second stripper.

9 types of SC resonators

- Six drift-tube types:
 - Covering $\beta = 0.02$ to 0.38.
 - Prototyping of mid- β types is in progress
- Three elliptical types:
 - Covering b = 0.49 to 0.81.
 - Two are identical to SNS resonators.

RIA Driver Swichyard for Beam Sharing to Production Targets

Beam Sharing Modes:

RIA will use 2 types of Fragment Separator

Broad range, energy bunching

- 18% momentum range
- 10 msr solid angle
- 0.1 % momentum resolution
- Energy spread compensation stage to minimize range straggling in helium gas

High resolution/high purity

- 6% momentum range
- 10 msr solid angle
- 0.03 % momentum resolution
- Wien filter stage for isobaric purification

Schematic Layout of Fragment Separator and Gas Catcher

Mechanical Layout of the A1900 Fragment Separator at NSCL for the Coupled Cyclotron Project

A1900 Quads

Large aperture
superconducting triplets
recently constructed at NSCL
for the Coupled Cyclotron
Project

A wide variety of production mechanisms and target concepts will be used at RIA to produce rare isotopes with 100-kW beam power.

2-Step Fast Neutron Fission

2-Step Projectile Fragmentation

(Solid Stopper)

2-Step Projectile Fragmentation

(High Pressure He Gas Stopper Cell)

One-Step Spallation Target

Concept for 3 cm thick windowless flowing liquid lithium target

Photo of the Electrodes Near the Extraction Aperture of a Prototype Fast Gas catcher

ISAC target servicing:

Two-step, neutron-generator target geometry

LIQUID-LITHIUM COOLED TUNGSTEN TARGET/ION SOURCE

Large acceptance/high resolution isobar separator

Layout of low q/m RIB linac injector

Summary

- RIA brings together a powerful, unique combination of advanced technologies to make possible a premier facility for nuclear science.
- Use of proven technologies together with simulations, engineering studies, and prototyping indicate that there are no show-stoppers and we are ready to build RIA.
- Ongoing development and prototyping of RIA components as currently coordinated by a national committee must continue.